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The Paterson theory of X-ray scattering from a face-centred cubic structure with deformation faults
is extended to include the case of a f.c.c. alloy, in which segregation of the alloy components takes
place at the faults. The principal effect of segregation is to make the reflexions asymmetrical. It is
possible that this asymmetry could be detected in the powder lines of certain cold-worked alloys.

1. Introduction

Suzuki (1952) has suggested a hardening mechanism
for face-centred cubic alloys, involving a segregation
of solute atoms at deformation stacking faults. Segre-
gation can occur because the crystal structure is close-
packed hexagonal in a layer two atoms thick at the
stacking fault; the concentration of solute atoms at
the fault will therefore differ from the average, when
the faulted region is in thermodynamic equilibrium
with the surrounding cubic phase. Using this idea
Suzuki has explained certain mechanical properties of
alloys (see also Cottrell, 1954), but so far no direct
evidence for segregation has been obtained. It is
possible that such evidence could be provided by
X-ray diffraction.

The purpose of this paper is to calculate the nature
of the X.ray scattering from a deformation-faulted
f.c.c. alloy, in which the alloy composition at the
faults differs from that in the cubic matrix. We thus
require to extend the treatment of Paterson (1952),
dealing with the diffraction from a homogeneous,
faulted f.c.c. crystal, to include the case of segregation.

2. Intensity distribution in reciprocal space

(@) General formula

Fig. 1(a) illustrates the stacking sequence of the
close-packed (111) layers, with the faulted positions
denoted by F, and f,, f, representing the scattering
powers averaged over the atoms in the two kinds of
layer. When several faults occur in succession, the

c.p.h. structure is developed only at the boundaries
of the set, so that segregation takes place only at the
kinks in the ‘stacking line’.

The theory developed in this section assumes that
there is no change of layer spacing accompanying
segregation. The extension of the theory to include
both change of scattering power and of spacing is
considered in the Appendix, but it is shown there
that the simpler theory of this section is adequate
for most cases.

We make the usual assumption that faulting is
restricted to one set of (111) planes only: the limita-
tions imposed by this assumption have been considered
by Willis (1958).

At first, the treatment follows very closely that
given by Warren & Warekois (1955) for the problem
of deformation-faulting without segregation.

It is convenient to choose hexagonal axes A, A,, A,,
with A,, A, in the (111) plane and A, normal to this
plane. If a,, a,, a, are the cubic axes of the unfaulted
structure, then

A; = —a,[2+a,/2
A, = —2p/2+2,/2 (1
Az =  a,/3+a,/3+a,/3.

Similar equations relate the corresponding hexagonal
H,, H,, H; and cubic Akl indices:

Hy = —hj2+k[2
H, = —k[2+1[2 (1a)
Hy=  hj3+Ek[3+13.
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Fig. 1. (a) Diagram illustrating stacking sequence of (111) layers. Faulted positions are denoted F, and the average scat-

tering powers of the atoms in the two kinds of layer are denoted f,, f,. The ‘stacking line’ is the broken line AB.
(c) Different types of sequence for four successive layers.

ferent types of sequence for three successive layers.

(b) Dif-
(d) Differ-

ent types of sequence for the six layers j—1, 4, j+1, j+m—1, j+m, j+m-+1, where m > 2.

In the presence of faulting A; is not a repetition
vector of the lattice, and so H; is not necessarily
integral.

Let T, mym, be the position vector of the atom
m,m, In layer my, ie.

Tomymems = mlAl +m2A2+m3A3+8m3 )

(2)

where 8,,, is a vector which depends on m, and gives
the change in r due to the presence of faults. (5,
can be written in,,(A,;—A,), where n, is an integer
depending on mg.) The diffracted intensity I is then

I = Ie 2 2 fmlmgmsfmfmz'ms'

mymgmg my’ mg' my’

271
X €Xp T (S—So) * (rml’mz’mg'_rm1m2m3) s (3)

where S;, S are unit vectors along the incident and
scattered directions, A the incident wavelength and
I, the scattered intensity per electron. Substituting
(2) into (3) gives:

I = Ie 2 2 fmlmzmsfml'mz'mg’
mymemg my’ mg’ mg’

27t

X exp T

+<m;—m3)A3+8m3'—8m3]} .

(CENE [(m{—*ml)AI + (mé—mz)Az

4)

The average scattering power of an atom depends on
mg only and can be written f,,,. Further if we consider
the unfaulted crystal to be in the form of a parallel-
epiped, and neglect a small term corresponding to
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weak diffuse scattering and arising from the dis-
ordered distribution of atoms in the (111) plane,
(4) becomes:
T

7
sin? D—’ (S—S,) -AIJ sin? E (S—S,) -AzJ

sin2 [

(S—S,) -NlAI] sin? [’I’ (S—S,) -NzAz]

€

-
% Z 3yl esp{ T (S-8))

mg mg

-[(m;—m)A3+8m,—8m3]} . (5)

Here N,, N, are the number of atoms along the
A,, A, directions. If the coefficient of the summation
is denoted by @2 and §;,,,—8; by A,, where j, j+m
refer to the jth, j+mth layers, then the summations
can be separated and written as:

¥ . 270
I=0% 3 Nulfifimexp |5 (S=Sp)- Bl
X exp [277” (S—8,) -mA,].

N is the total number of layers and N,, the number of
layers with an mth neighbouring layer (ie. N, =
N—|m|). (S—8,)/A can be expressed in terms of the
basis vectors B,, B,, B, reciprocal to A}, A,, A,, using
hy, kg, kg as continuous co-ordinates:

(S—Sg)/A = hy By +hyBy+hy By .
Putting
2n

A

we obtain the following general formula for the
diffracted intensity:

(S—Sy).Ap = 0,

b
I =@ 3 N,(fifi+m XD 10,4, exp 2mimhy . (6)

m=-—-N

(b) Evaluation of {f;fismeXP 10,mas.
It remains to evaluate {f;f; n €xXp 10,,)ay.. This can
be written in the form

<'fif7'+m exp i9m>av. = Pllf% (exp 2'0m>11
+2P 5 f1fo {eXD 10,0154 Paof3 (eXP 10,955,  (7)

where P,;, P,, P,, are the probabilities that layers
J» j+m have atoms of average scattering power

fi and f, f; and f,, f, and f,, and {exp 10,,),,... are
the corresponding values of {exp i,,),,. for all such

pairs of layers.

i m=0

For m =0, 6» =0 and {expifmy = 1. Further,
P, =0, and P, P, are the probabilities that a
given layer j has scattering power f,, f, respectively;
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these probabilities can be readily found from Fig.1(b),
showing four different sequences for the layers j—1, j,
Jj+1. The stacking line is shown as a broken line, and
the jth layer is fi-type in the first pair of sequences
and f,-type in the last pair. Clearly, P;; = a2+ (1—«x)2
and P, = 20(1—«), where « is the faulting para-
meter, i.e. the probability that an arbitrarily chosen
layer is faulted.
Substituting these P values into (7) gives:

{Sfifismexp 10, = f1(1—20+202) +f2(20—202) . (8)

(if) m =1

Py, and Py, are the probabilities that neighbouring
layers j, j+1 are both f-type and both f,-type, and
P, is the probability that j is f,-type and j+1 is
fo-type. We must now consider the six sequences in
Fig. 1(c). P,; is the sum of the probabilities of the
first pair of sequences, P,, the sum of the next pair,
and P,, the sum of the last pair. Thus

P =1-3x+43x2, Py =P, =0a—nx2.

Further, (exp ¢0) can be written
{(exp i0ny = (1—a') exp 271 (%—sz}
+o' exp 27 (hgﬁ) , (9)

where «’ is the probability of a fault between the

jth, j+1th layers. From Fig. 1(c) we see that

o' = a3[(1-3x+3a2), if layer j is f;-type and layer
j+1is fi-type,

=1—g, if layer j is f,-type and layer
J+1 is fo-type,
= «, if layer j is f;-type and layer

J+1is fo-type.

(exp 0mp;1, (€XP 10m gy, (eXP 10m),, are then given by
(9) using the appropriate value of o'.

There is appreciable intensity only for &,, A, =
integers H,, H, (see equation (5), taking N,, N, > 1).
For the reflexions having H,~H, = 3M (M integral),
(7) and (9) give

{fufsem €xp ifmy = fi[1+40(1-a)f+a(l—)p%], (10)

where f = f,/fi—1; and for the reflexions having
H —-H,=3M+1

{Jifiim €Xp i0my = —f1E exptic, (11)

where

Ecos e = §{1+4o(l—o)f+a(l—x)B?]
and (11a)
E sin & = )/3(1—20)[1 —x (1 —x)5?]

(iii) m = 2
To evaluate the P’s we must consider the twelve
sequences in Fig. 1(d); P, is the sum of the prob-
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abilities of the first four, P,, of the second four, and

P, of the last four. Thus P, = (1-2x+242)2,

Py, = 46%(1 —x)? and P,y = 200(1 —x) (1~ 20 +202).
To determine {exp i) we write it as

{exp t0my = {exp 10,_,) {exp 16;_s) {exp ihy_5). .. ,
(12)

where {expif,_,), {expifl,_,>... are the average
values of exp ¢f between layers j and j+1, j+1 and
j+2.... If &' is the probability of a fault between
any pair of neighbouring layers in the sequence j to
j+m, then for the pairs j,j+1 and j+m-—1, j+m
(see Fig. 1(d) or Fig. 1(d))
o' = o?[(1-20+2x%), j and j+m fi-type,
=1 jand j+m fo-type.
For all other pairs «" = «, independent of f;, f;m.
The individual averages on the r.h.s. of equation (12)
can now be expressed by equation (9) with &’ replaced
by the appropriate value of «'’. Substituting the

different values of (expifnm) and P into (7) finally
gives for the 3M reflexions:

{fifiem €XP 10my = fill +40(1 — ) B+4a% (1 —x)22];

(13)
and for the 3M 41 reflexions

(fifi4m €xP 10,) = f1(—Z exp:iy)" "D exp+id, (14)

where
7?2 = 1-3x+3x2,
tan y = J/3(1—2x),

Dcosd = —4+3x—30a?, (142)
D sin § = $Y3(1—2x)[1+ 2 (1 —)B].
I2 (arbitrary units)
r3
a=0+5
a=04, 06
-2
F1 a=02, 0-8
—~05 0 05
hy —>

Fig. 2. Dependence of diffuse intensity on %z for
different values of o.

For m = —1, equations (10), (11) apply with & in
(11) replaced by F; similarly (13), (14) apply for
m < —2 with &+ in (14) replaced by .

(¢) Intensity of reflexions having H,—H, = 3M
Substituting (8), (10), (13) into (6) gives

I=1+I,
where
I, = fill+4x(1-x)B
¥
+40?(l-a)26%] X (N—|m|)exp 2mimh,
and m=—N

I, = 2a(1—o) f1?
x [1-20(1—o«)+ (1 -4 +402) cos 27th,] .

I, is a term equivalent to diffraction from a perfect
crystal and gives sharp peaks at integral ;. I, is a
term giving rise to diffuse intensity; its dependence on
hy for different values of « is shown in Fig. 2. The
maximum integrated diffuse intensity occurs for
o = 0:5; I, is then independent of %4, apart from the
form-factor dependence of the quantity fZg2.

(d) Intensity of reflexions having H,—H, = 3M+1
Substituting (8), (11), (14) into (6), and carrying
out the summation, gives

with segregation

N ———

9 AR

0 05 1

Fig. 8. Curves showing shapes of 8M+1 diffraction peaks.

—-—— o =025 f =0 (faulting without segregation).
& = 025, B =10 (faulting with segregation).
Faulting without segregation displaces the peak and the
centre of gravity from 0 to P;; segregation displaces the
peak further to P, and the centre of gravity to G.
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Fig. 4. (a) Peak displacement as a function of § for different values of «. The displacement is expressed as a fraction of an

order separation.
as a fraction of an order separation.

01
SO I(hg)dhy = Imax..

I(hg) = 14+2x(1—x)B(f+2)—2E cos (2mhg+e)
_cos (4thyt 6) + Z cos (2mwhyt 6F )
14+ 22427 cos (2rhsty)

where I(h;) = I/(fiN®?). In obtaining (15) the as-
sumption has been made that N, in (6) can be re-
placed by N: this is a very close approximation
provided «N > 1. In this expression (15) for the
dependence of the intensity on the co-ordinate 7
there are two independent parameters, « and 8, which
are related to the degrees of faulting and of segrega-
tion respectively. The remaining symbols in (15) are
defined in terms of «x and § by equations (1la) and

+2D , (15)

AC12

(b) Centroid displacement as a function of 8 for different values of «. The displacement is expressed
(¢) Integral breadth B as a function of § for different values of «. B is defined as

(14a). B = 0 corresponds to the Paterson case of no
segregation, and according to Suzuki (1952) g for
most alloys will lie well within the range

—0-2 < g < +02.
For « = 0-5, (15) simplifies to
I(hy) = 182 +3(1+B+1B%)/(5+4 cos 2mhy) .

This represents a symmetrical distribution with
maximum intensity at half-integral values of &4, just
as for the case of no segregation.

If o = 0-5, segregation gives rise to a change in the
positions of the diffraction peaks, an asymmetry

46
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about these positions, and a change in the integral
breadths of the diffraction streaks. These effects are
illustrated in Fig. 3, which shows the shape of the
reflexions for & = 0-25, 8 = 0 (faulting without segre-
gation) and for x = 0-25, § = 1-0 (faulting with segre-
gation). (The value § = 1-0 is well outside the likely
range of f: it is chosen here to make the asymmetry
of the diffraction peak in Fig. 3 immediately obvious).
In the former case faulting displaces the peak from
0 to P, and broadens the reflexion symmetrically,
whereas segregation displaces the peak further (to P,)
and makes the reflexion asymmetrical, so that the
centroid is at G, where OG > OP,.

With the aid of the Harwell Mercury computer the
values of OP, and OG (expressed as fractions of the
order separation) and of the integral breadth B were
evaluated from (15) for different combinations of «, g.
The results are given in Figs. 4(a), (b), (c) for the ranges
0<x<1, —02<p<02; the curves are the same
for x, 1—x and for 3M +1, 3M —1 reflexions, as in-
dicated by (15) which is unchanged (except for the
sign of h;) when « is replaced by 1—« or + by F.
These curves show that the position of the centroid
of a reflexion is much more sensitive to a change in
f than the peak position or the integral breadth.
Thus for « = 0-1, § = 0 the centroid and peak posi-
tion are equally displaced by a given amount; if now
f increases to 0-1 the peak displacement and integral
breadth change by an additional 29, whereas the
centroid is displaced by a further 509%.

We conclude that as far as single crystal diffraction
patterns are concerned the principal changes induced
by segregation are the introduction of weak diffuse
streaks between reflexions in the columns having

H,—H,= 3M, and of asymmetry in the remaining
reflexions. These effects are shown schematically in
Fig. 5 for the case f > 0; for f < 0 the asymmetry
is reversed, the centroid displacement being less than
the peak displacement.

: 3. Powder pattern
(a) General
The effect of combined faulting and segregation on
the powder diffraction pattern can be determined in
the way indicated by Paterson (1952). The value of
H,—H, for each component of an {ikl} line is found
from equation (la); if H,—H, = 3M this component
is sharp and undisplaced, whereas if H,—H, = 3M+1
the component is broadened asymmetrically and dis-
placed to higher or lower Bragg angles, according to
the sign +. Fig. 6 shows diagrammatically the ap-
pearance of the powder pattern up to {400}.

{311} is broadened symmetrically, as it contains an
equal number of components of the types 3M +1 and
3M —1; and for the same reason its change of integral
breadth, as induced by segregation, is much greater
than for the other lines.

The peak displacement (A428), of the component of

> P

= o
Hy=H, = 3M IM+1 3M+2  3M+3
(=3M=1) (=3M")

Fig. 5. Schematic diagram showing principal changes in
reciprocal lattice induced by segregation. In the 3M columns
of reflexions a diffuse intensity band appears, while the
reflexions in the 3M+1 columns are broadened asym-
metrically.

/ ) D
/ //,//..4

4

NN
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\\\\\\v
\\\\

S\

[}
o
o

Fig. 6. Effect of combined faulting and segregation on the
profiles of powder diffraction lines up to {400}.

a powder line is related to (4dk;)p by the equation
(Warren & Warekois, 1955):

(420)p = 2 tan 6 cos® p(Ahy)p/hs , (16)

where 6 is the Bragg angle and ¢ the angle between
the vectors By and H,B,+H,B,+H,;B;. For o < 1,
the same form of equation applies to the centroid
displacement:

(420)¢ = 2 tan § cos? p(Ahy)slhs . (16a)

As (Ahy)p is relatively insensitive to changes of g

(§ 2(d)), the faulting parameter, x, can be deduced
from the observed (426),, using (16) and Fig. 4(a) and
assuming g = 0. § can then be found from the ob-
served (420),, using (16a) and Fig. 4(b).

(0) Particular applications

It is clear that in looking for segregation effects we
must choose alloys with values of § as high as possible.
p increases with the difference in stacking fault
energies and with the difference in atomic scattering
factors of the alloy components, and it is preferable
to choose an intermediate composition of an alloy
with a wide solid solution range (Suzuki, 1952).
Stacking fault measurements by diffraction methods
have been reported on 50/50 Ag-Au (Smallman &
Westmacott, 1957) and on 50/50 Co-Ni (Christian &
Spreadborough, 1957); from Suzuki’s theory and
estimates of stacking fault energies by Thornton &
Hirsch (1958) § would be about 0-03 for X-ray scat-
tering from Ag—-Au and about 0-1 for neutron scatter-
ing from Co-Ni. It is possible that segregation could
be detected in these cases by comparing the shapes
of the three types of line (Fig.®6) represented by
{111}, {200} and {311}.
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APPENDIX

The treatment in § 2 can be extended to allow for the
change of layer spacing accompanying segregation.
Let A;, A;(1+¢/2n), Az(1+¢/n) be the spacings be-
tween layers with average scattering factors of f, and
i, fr and f,, f; and f,. It is easily shown that formula
(15) for the intensity of the 3M+1 reflexions is then
modified, assuming ¢ < 1, to

I(hg) = 142x(1—o)B(f+2)—28 cos (2mhy+s)
_ €08 (4mthy+t)+ P cos (2mhy+t—1p)

3T 14+ P24 2P cos (27hy+p) > 17

where

Scoss = f+x(l—x)f(4+p)
+/3a(1— o) (1 —20) (1 +B)ehs,

Ssins = +3)3(1—2«)(1—of2+x22)
+oa(l—u)(1+8)(2+F)ehs;

@cosq = 1-20+202F)/Bx(l—oa)(1—2x)ehs,,

@sing = +Y3(1-20)+o(l—o)ehy;

Rcosr = —1F3Y3(1—2x)ch,,

Rsinr = —3chy;

Pcosp = 3,

Psinp = +3)/3(1—2x)+20(1—«)ehs;

Tcost = Q2cos2g—4x(l—x)(1+B)QR cos (g+7)
+4x2(1 —x)2(1+f)2R2 cos 2r,

Tsint = ¢?sin 29—4x(1—«)(1+B)QR sin (g+7)
+402(1—x)2(1+ B)2RE sin 2r.

Acta Cryst. (1959). 12, 689
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For a given alloy, with finite values of «, § and ¢,
the profiles of the 3M +1 and 3M —1 reflexions are
no longer equivalent; moreover, these profiles are
different for the successive peaks occurring with
increasing ky. Evaluation of (17) with the aid of the
Mercury computer for the case ¢ = 0-02 showed that
the values of the points on the curves in Figs. 4(a) and
4(b) (corresponding to ¢ = 0) were changed by about
7% for the first order peak and 229, for the second
order peak. For many alloys, in particular those such as
Ag—Au and Co-Ni with a wide range of solid solution,
¢ is practically zero and the simpler theory of §, is
then adequate.

Thanks are due to Mr T.M. Valentine and Mr
T. Vann for handling the bulk of the calculations.
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The Crystal Structures of PuNi, and CeNi,*

By Dox T. CRoMER AND CrayToN E. OLSEN

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S. A.

(Received 9 December 1958)

sy
The structure of PulNi, and the structure and composition of CeNi, have been determined by single
crystal X-ray methods. PulNi, has three formula units in a rhombohedral unit cell with a =6-22 A
and « =33° 44’, probable space group R3m. CeNi; has six formula units in a hexagonal cell with
a=4-98 and c=16-54 A, probable space group P6,/mmec. These structures are both derived from
stacking single layers of the MNij; structure (CaCu,-type) and double layers of the MNi, structure

(Cu,Mg-type).

Introduction

Because of the many similarities between the pluto-
nium-nickel and cerium-nickel binary phase diagrams,
structures of compounds in these two systems are
simultaneously being investigated. The plutonium-

* Work performed under the auspices of the Atomic
Energy Commission.

nickel phase diagram, published originally by Wensch
& Whyte (1951), shows the existence of the com-
pounds PuNi, PuNis, PuNis, PulNi,, PulNis and PugNi;».
The structures of PulNig, PuNis and PusNii» have been
reported in a review by Coffinberry & Ellinger (1956)
to be of the CuzMg, CaCus and TheNi;, structure types,
respectively. Vogel (1947), in a study of the cerium-—
nickel phase diagram, lists the compounds CesNi,

46*



