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The Paterson theory of X-ray scattering from a face-centred cubic structure with deformation faults 
is extended to include the case of a f.c.c, alloy, in which segregation of the alloy components takes 
place at the faults. The principal effect of segregation is to make the reflexions asymmetrical. It is 
possible that this asymmetry could be detected in the powder lines of certain cold-worked alloys. 

1. Introduction 

Suzuki (1952) has suggested a hardening mechanism 
for face-centred cubic alloys, involving a segregation 
of solute atoms at  deformation stacking faults. Segre- 
gation can occur because the crystal structure is close- 
packed hexagonal in a layer two atoms thick at  the 
stacking fault; the concentration of solute atoms at  
the fault will therefore differ from the average, when 
the faulted region is in thermodynamic equilibrium 
with the surrounding cubic phase. Using this idea 
Suzuki has explained certain mechanical properties of 
alloys (see also Cottrell, 1954), but  so far no direct 
evidence for segregation has been obtained. I t  is 
possible tha t  such evidence could be provided by 
X-ray diffraction. 

The purpose of this paper is to calculate the nature 
of the X-ray scattering from a deformation-faulted 
f.c.c, alloy, in which the alloy composition at  the 
faults differs from tha t  in the cubic matrix. We thus 
require to extend the t reatment  of Paterson (1952), 
dealing with the diffraction from a homogeneous, 
faulted f.c.c, crystal, to include the case of segregation. 

2. Intensity distribution in reciprocal space 

(a) General formula 

Fig. l(a) illustrates the stacking sequence of the 
close-packed (111) layers, with the faulted positions 
denoted by F, and f~, f2 representing the scattering 
powers averaged over the atoms in the two kinds of 
layer. When several faults occur in succession, the 

c.p.h, structure is developed only at  the boundaries 
of the set, so tha t  segregation takes place only at the 
kinks in the 'stacking line'. 

The theory developed in this section assumes tha t  
there is no change of layer spacing accompanying 
segregation. The extension of the theory to include 
both change of scattering power and of spacing is 
considered in the Appendix, but it is shown there 
tha t  the simpler theory of this section is adequate 
for most cases. 

We make the usual assumption tha t  faulting is 
restricted to one set of (111) planes only: the limita- 
tions imposed by this assumption have been considered 
by Willis (1958). 

At first, the t rea tment  follows very closely tha t  
given by Warren & Warekois (1955) for the problem 
of deformation-faulting without segregation. 

I t  is convenient to choose hexagonal axes A1, A2, A 3, 
with A 1, A 2 in the (111) plane and A 3 normal to this 
plane. If al, a s, a a are the cubic axes of the unfaulted 
structure, then 

AI = -aJ2+a2/2 l 
As = - a J 2 + a a / 2  / (1) 
A a = a J3  + a2/3 + aa/3 • 

Similar equations relate the corresponding hexagonal 
H1, H2, H a and cubic hkl indices: 

H, = - h/2 +k/2 | 

H e = -Ic/2+1/2 [ (la) 
H a = h/3+]c/3+1/3. 
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Fig. 1. (a) Diagram illustrating stacking sequence of (111) layers. Faulted positions are denoted 2', and the average scat- 
tering powers of the atoms m the two kinds of layer are deno tedf l , f  ~. The 'stacking line' is the broken line A B .  (b) Dif- 
ferent types of sequence for three successive layers. (c) Different types of sequence for four successive layers. (d) Differ- 
ent types of sequence for the six layers j --1,  j, jq-1, j--Fro--1, j-Fro, j + m +  1, where m >_ 2. 

I n  the  presence of fau l t ing  A 3 is no t  a r epe t i t ion  
vec tor  of t he  la t t ice ,  and  so H a is no t  necessar i ly  
in tegral .  

Le t  rmlm, m3 be the  pos i t ion  vec tor  of the  a tom 
mlm~ in layer m3, i.e. 

r m l m m  = m 1 A l  + m 2 A 2 + m 3 A 3 + S m 3  , (2) 

where 8 m is a vec tor  which  depends  on m 3 and  gives 
the  change  in r due to  the  presence of faults .  ( ~ 3  
can be wr i t t en  ½nm(A1-A2)  , where  n m is an  in teger  
depending  on m3. ) The  d i f f rac ted  i n t ens i t y  I is t h e n  

m l r a 2 m  3 m l ' m 2 " r a  3 '  

2~i  
x e x p - ~ -  ( S - S 0 ) .  (r~l,~¢m,-r~xm2m:,),  (3) 

where So, S are un i t  vectors  a long t he  inc iden t  a n d  
sca t te red  direct ions,  2 the  inc iden t  wave l eng th  a n d  
Ie the  sca t te red  i n t ens i t y  per  electron.  Subs t i t u t i ng  
(2) in to  (3) gives:  

7"n I #2 2 m 3 ~I~. I ' m 2" 71~ 3" 

× exp { ~  <S-S0>" [ (m~-ml>A , + <m; -  m,>A 2 
% 

1} + ( m 3 - m 3 ) A a + S m a , - ~ m  a . (4) 

The  average  sca t te r ing  power  of an  a tom depends  on 
m 3 only  and  can be wr i t t en  fro3. F u r t h e r  ff we consider  
the  un fau l t ed  crys ta l  to  be in the  form of a paral le l-  
epiped,  and  neglect  a smal l  t e r m  corresponding to  
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weak diffuse scattering and arising from the dis- 
ordered distribution of atoms in the (111) plane, 
(4) becomes: 

sine [~ (S-So)"NaA1] sin~ [~ ( S -  S0) "N~A~.] 
I = / ~  

sin~ [~ ( S -  S0) • A~] sine [~ (S-So)  "A2 l 

¢-  (SSo/ 
m 3 m3" 

• [(ma--m)Aa+~ma,--~ma]} • (5) 

Here N~, N e are the number of atoms along the 
A1, A2 directions. If the coefficient of the summation 
is denoted by ¢3 and ~]+m-~i~ by Am, where j,  j + m  
refer to the j th,  j + m t h  layers, then the summations 
can be separated and written as: 

z = ¢~ 2 ~m<f~¢)+,~ exp (S--S0/" ZXm]>a~. 
m = - - A r  

x exp - -  ( S -  So). mAa]. 

N is the total number of layers and N~ the number of 
layers with an ruth neighbouring layer (i.e. Nm = 
N-Im]) .  (S-S0) /2  can be expressed in terms of the 
basis vectors B~, Be, B a reciprocal to A1, A~, A~, using 
hi, h~, h a as continuous co-ordinates: 

(S-So) /2  = hlBl +heB~+haB a . 
Putting 

2_~ ( s -  s0). A~ = 0~ 

we obtain the following general formula for the 
diffracted intensity: 

= ~ ~ N~<f~f~+~exp i0&~.e~p 2 ~ . .  (6) 
m = - - ~ ¥  

(b) Evaluation of <fjfj+m exp iOm)av. 
I t  remains to evaluate <f]f~+,, exp iOm)av.. This can 

be written in the form 

<fjfj+m exp iOm>av. = Pl l f  2 (exp iOm>n 
+ 2 P l ~ L f  2 <exp iOm)a2+P22f 2 (exp i0m)22, (7) 

where Pal, P12, Pg.e are the probabilities that  layers 
j, j+m have atoms of average scattering power 
fa and f~, f~ and A, A and f2, and (exp iOm}al.., are 
the corresponding values of (exp iO,,)~, for all such 
pairs of layers. 

( i )  m = 0 

For m = 0, Om = 0 and (exp iOm) = 1. Further, 
Pa~. = 0, and P~I, P12 are the probabilities that  a 
given layer j has scattering power fl, f~. respectively; 
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these probabilities can be readily found from Fig. 1 (b), 
showing four different sequences for the layers j - 1 ,  j ,  
j +  1. The stacking line is shown as a broken line, and 
the j th  layer is fl-type in the first pair of sequences 
andfe-type in the last pair. Clearly, Pal = c~e+ (1-c~) ~" 
and P~. = 2c~(1-c~), where c~ is the faulting para- 
meter, i.e. the probability that  an arbitrarily chosen 
layer is faulted. 

Substituting these P values into (7) gives: 

(fifj+m exp iota) = f~(1-2c~+2ae)+f~(2c~-2c~e). (8) 

(ii) m = 1 
Pal and P22 are the probabilities that  neighbouring 

layers j, j + 1 are both fl-type and both f2-type, and 
Pie is the probability that  j is fl-type and j + l  is 
re-type. We must now consider the six sequences in 
Fig. 1(c). Pla is the sum of the probabilities of the 
first pair of sequences, P2e the sum of the next pair, 
and P~e the sum of the last pair. Thus 

P l l =  1 - 3 a +  3a2, P 2 2 = P j e  = ~ - a e .  

Further, <exp iOm) can be written 

<exp iOm} = (1-~x') exp 2~i (-h3+h~ ) 

+a'exp2~i(h '3-~h2 ) , (9) 

where c¢' is the probability of a fault between the 
j th,  j + l t h  layers. From Fig. l(c) we see that  

a ' =  c~a/(1-3a+3a~), if layer j is fl-type and layer 
j + 1 is fl-type, 

= 1-c~, if layer j is fe-type and layer 
j + l  is f2-type, 

= a, if layer j is fl-type and layer 
j + 1 is f~-type. 

(exp iOm)l~, (exp iO,,,)ee, (exp iOm)l~ are then given by 
(9) using the appropriate value of a'.  

There is appreciable intensity only for hi, h~ = 
integers H1, H 2 (see equation (5), taking N~, N~ >> 1). 
For the reflexions having H ~ - H  e = 3M (M integral), 
(7) and (9) give 

<fffj+m exp iOrn> = ~[1  +4a(1--c~)fl+c¢(1--c~)fl2], (10) 

where fl =fe / f l -1;  and for the reflexions having 
H 1-H~. = 3M+ 1 

(f:f/+m exp iOm) =--f~E exp~:ie, (11) 
where 

and 
E cos e = ½ [ l + 4 a ( 1 - a ) f l + a ( 1 - a ) f l  2] I .  

( l la)  
E sin e = ½] /3 (1-2a) [1 -a (1-a ) f l2 ]  

(iii) m > 2 
To evaluate the P 's  we must consider the twelve 

sequences in Fig. l(d); PII is the sum of the prob- 
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abilities of the first four, P ~  of the second four, and 
P12 of the last four. Thus P n  = (1-2c~+2~s) s, 
P ~  = 4 ~ ( 1 - a )  ~' and PI~ = 2a(1-a)(1-2o~+2a2) • 

To determine <exp ion> we write it as 

<e p = < e x p  <exp <exp 
(12) 

where <exp iOo_~>, <exp iO~_~>.., are the average 
values of exp iO between layers j and j + 1, j + 1 and 
j + 2  . . . .  If  c¢" is the probability of a fault between 
any  pair of neighbouring layers in the sequence j to 
j+m,  then for the pairs j , j + l  and j + m - 1 ,  j + m  
(see Fig. l(d) or Fig. 1 (b)) 

c~" = a~'/(1-2c~+2a~), j a n d j + m  f~-type, 
= ½, j and j +m f~-type. 

For  all other pairs c¢"= c~, independent of f# fj+~. 
The individual averages on the r.h.s, of equation (12) 
can now be expressed by equation (9) with c~' replaced 
by the appropriate value of a" .  Substituting the 
different values of <exp ion> and P into (7) finally 
gives for the 3M reflexions" 

<fjfj+m exp ion> = f~[1 +4a(1-cc)fl+4~(1-a)2fl~]; 
(13) 

and for the 3M±1  reflexions 

<f~f~+m exp iOa> = f ~ ( - Z  exp±iy)~-2D exp±i6 ,  (14) 

where 
Z~ = 1 -3c~+3~ ,  1 

tan  y = V3(1-2c¢), 
D cos (3 = -½+3c¢-3c~ ~., (14a) 
D sin ~ = ½~/3(1-2c~)[1 + 2~(1-~)fl]. 

12 (arbitrary units) 

-i et=O.S 
a=0.4, 0.6 

~ =  0.2, 0.8 

-o~5 o ols 
h a 

Fig. 2. Dependence of diffuse intensity on h a for 
different values of a. 

For m = - 1 ,  equations (10), (11) apply with ± in 
(11) replaced by T;  similarly (13), (14) apply for 
m _< - 2  with ± in (14) replaced by ~:. 

(c) Intensity of reflexions having H1-H~ = 3M 
Substituting (8), (10), (13)into (6)gives 

where 
I = I1+I ~ 

11 = f ~ [ l + 4 ~ ( 1 - a ) f l  N 
+4c~2(1_c~)~fl~] ~v (N-[m[)exp 2~imh 3 

and "=--~ 
A = 

x [ 1 - 2 ~ ( 1 - a ) +  ( 1 - 4 ~ + 4 a  ~) cos 2~ha]. 

I 1 is a term equivalent to diffraction from a perfect 
crystal and gives sharp peaks at  integral h 3. A is a 
term giving rise to diffuse intensity;  its dependence on 
h3 for different values of c¢ is shown in Fig. 2. The 
maximum integrated diffuse intensity occurs for 
a = 0.5; A is then independent of h 3, apart  from the 
form-factor dependence of the quant i ty  f~fl~. 

(d) Intensity of reflexions having H1-H9 = 3 M ± l  
Substituting (8), (11), (14) in to  (6), and carrying 

out the summation, gives 

l 

o P,,f, , 

I (ha) 

egation 

.. ~without segregation i 

G 
0.5 I 

ha " 

Fig. 3. Curves showing shapes of 3M÷ 1 diffraction peaks. 
a ---- 0.25, fl ---- 0 (faulting without segregation). 
a ---- 0.25, fl ---- 1-0 (faulting with segregation). 

Faulting without segregation displaces the peak and the 
centre of gravity from 0 to P1; segregation displaces the 
peak further to P2 and the centre of gravity to G. 
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c~=0-5 

(A h3)p 

a=0-4, 0.6 

a=0.3,  0.7 

a=0.2, 0.8 

a =  0.1,0-9 

0.15 

-0.05 

-o;2 

(A hs)q 

~= 0.5 

0.15 

/ a =  0.4, 0.6 

~ 0.10 d=0.3, 0.7 

a=0.2, 0.8 

a= 0.1,0.9 

! I I i 

0.2 -0.2 0 0.2 

(b) i 

t 
8 

c~=0.5 
2 

0:=0.3,0.7 

a=0.2, 0-8 
i - - -  

a=0.1,0.9 

-o'.2 o 0.2 

f (c) I 

Fig.  4. (a) P e a k  d i s p l a c e m e n t  as a f u n c t i o n  of /~ fo r  d i f f e r e n t  v a l u e s  of a .  T h e  d i s p l a c e m e n t  is e x p r e s s e d  as a f r a c t i o n  of an  
o r d e r  s e p a r a t i o n .  (b) C e n t r o i d  d i s p l a c e m e n t  as  a f u n c t i o n  of fl fo r  d i f f e r e n t  v a l u e s  of a .  T h e  d i s p l a c e m e n t  is e x p r e s s e d  
as a f r a c t i o n  of a n  o r d e r  s e p a r a t i o n .  (c) I n t e g r a l  b r e a d t h  B as a f u n c t i o n  of fl fo r  d i f f e r e n t  v a l u e s  of a .  B is d e f i n e d  as  

il I (ha)dha-- lmax'" 

I(h3) = 1 +2a(1-oc)f l( f l+2)-2E cos (27~ha±e) 

+ 2D. cos (4uh3±~) + Z cos (2~h3±(3:Fy) 
1 + Z 2 + 2 Z  cos (2~h3±7) 

, ( 1 5 )  

where I ( h 3 ) -  I/(f~Nq52). In  obtaining (15) the as- 
sumpt ion  has been made  tha t  N,n in (6) can be re- 
placed by N:  this is a very  close approximat ion 
provided c~N ~ 1. In  this  expression (15) for the 
dependence of the in tens i ty  on the co-ordinate h a 
there are two independent  parameters ,  c~ and fl, which 
are related to the degrees of faul t ing and of segrega- 
t ion respectively.  The remaining symbols in (15) are 
defined in terms of c~ and fl by  equations ( l l a )  and 

(14a). fl = 0 corresponds to the Paterson case of no 
segregation, and according to Suzuki (1952) fl for 
most alloys will lie well wi thin  the range 

-0 -2  < fl < +0.2. 

For a = 0.5, (15) simplifies to 

I(h3) = ¼fl2+3(1 +fl+kf12)/(5+4 cos 2~h8). 

This represents a symmetr ica l  dis t r ibut ion with 
m a x i m u m  intensi ty  at half- integral  values of h3, just  
as for the case of no segregation. 

If c~ ~ 0.5, segregation gives rise to a change in the  
positions of the diffraction peaks, an a symmet ry  

A C 12 46 
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about these positions, and a change in the integral 
breadths of the diffraction streaks. These effects are 
illustrated in Fig. 3, which shows the shape of the 
reflexions for a = 0.25, fl = 0 (faulting without segre- 
gation) and for c~ = 0.25, fl -- 1.0 (faulting with segre- 
gation). (The value fl = 1.0 is well outside the likely 
range of fl: it is chosen here to make the asymmetry  
of the diffraction peak in Fig. 3 immediately obvious). 
In  the former case faulting displaces the peak from 
0 to P1 and broadens the reflexion symmetrically, 
whereas segregation displaces the peak further (to Pc) 
and makes the reflexion asymmetrical, so that  the 
centroid is at  G, where OG > OP 2. 

With the aid of the Harwell Mercury computer the 
values of OP~ and OG (expressed as fractions of the 
order separation) and of the integral breadth B were 
evaluated from (15) for different combinations of a, ti- 
The results are given in Figs. 4(a), (b), (c) for the ranges 
0 _< c~ _< 1, - 0 . 2  < fl _< 0.2; the curves are the same 
for ~, 1 - ~  and for 3 M + l ,  3 M - 1  reflexions, as in- 
dicated by (15) which is unchanged (except for the 
sign of ha) when c¢ is replaced by 1 - a  or + by ~:. 
These curves show tha t  the position of the centroid 
of a reflexion is much more sensitive to a change in 
fl than the peak position or the integral breadth. 
Thus for ~ = 0.1, fl = 0 the centroid and peak posi- 
tion are equally displaced by a given amount;  if now 
fl increases to 0.i the peak displacement and integral 
breadth change by an additional 2%, whereas the 
centroid is displaced by a further 50%. 

We conclude that  as far as single crystal diffraction 
patterns are concerned the principal changes induced 
by segregation are the introduction of weak diffuse 
streaks between reflexions in the columns having 
H 1 - H ~ - - - 3 M ,  and of asymmetry  in the remaining 
reflexions. These effects are shown schematically in 
Fig. 5 for the case /~ > 0; for fl < 0 the asymmetry  
is reversed, the centroid displacement being less than 
the peak displacement. 

Y 

H1-H2 = 3M 3,44 + 1 

, a ,  

3,44+2 3h1+3 

(=3,44'-1) (= 3/t4') 

Fig. 5. Schematic diagram showing principal changes in 
reciprocal lattice induced by segregation. In  the  3M columns 
of reflexions a diffuse in tensi ty  band appears,  while the  
reflexions in the  3M: t : l  columns are broadened asym- 
metrically.  

111 200 220 311 222 400 

Fig. 6. Effect  of combined fault ing and segregation on the  
profiles of powder  diffraction lines up  to {400}. 

a powder line is related to (Ah~)~o by the equation 
(Warren & Warekois, 1955): 

(A20)p -- 2 tan 0 cos ~ f(Aha)~/h3, (16) 

where 0 is the Bragg angle and ~ the angle between 
the vectors B a and H1BI+H~B~+HaB a. For ~ < 1, 
the same form of equation applies to the centroid 
displacement: 

(A20)a --- 2 tan 0 cos ~ q~(Aha)a/h a . (16a) 

As (Aha) ~ is relatively insensitive to changes of fl 
(§ 2(d)), the ~aultlng parameter,  a, can be aeaucea 
from the observed (A20)p, using (16) and Fig. 4(a) and 
assuming /~ = 0. fl can then be found from the ob- 
served (A20)o, using (16a) and Fig. 4(b). 

3. P o w d e r  pattern 
(a) General 

The'effect of combined faulting and segregation on 
the powder diffraction pat tern can be determined in 
the way indicated by Paterson (1952). The value of 
H 1 - H  ~ for each component of an {hlcl} line is found 
from equation (la); if H 1 - H  ~ = 3 M  this component 
is sharp and undisplaced, whereas if H 1 - H  e = 3 M + l  
the component is broadened asymmetrically and dis- 
placed to higher or lower Bragg angles, according to 
the sign +. Fig. 6 shows diagrammatically the ap- 
pearance of the powder pat tern up to {400}. 

{311} is broadened symmetrically, as it contains an 
equal number of components of the types 3 M +  1 and 
3 M - 1 ;  and for the same reason its change of integral 
breadth, as induced by segregation, is much greater 
than for the other lines. 

The peak displacement (A20)p of the component of 

(b ) Particular applications 
I t  is clear that  in looking for segregation effects we 

must choose alloys with values of fl as high as possible. 
fl increases with the difference in stacking fault 
energies and with the difference in atomic scattering 
factors of the alloy components, and it is preferable 
to choose an intermediate composition of an alloy 
with a wide solid solution range (Suzuki, 1952). 
Stacking fault measurements by  dlf{raction methods 
have been reported on 50/50 Ag-Au (Smallman & 
Westmacott,  1957) and on 50/50 Co-Ni (Christian & 
Spreadborough, 1957); from Suzuki's theory and 
estimates of stacking fault energies by Thornton & 
tIirsch (1958) fl would be about 0.03 for X-ray scat- 
tering from Ag-Au and about 0-1 for neutron scatter- 
ing from Co-Ni. I t  is possible that  segregation could 
be detected in these cases by comparing the shapes 
of the three types of line (Fig. 6) represented by 
{111}, {200} and {311). 
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A P P E N D I X  

The t rea tment  in § 2 can be extended to allow ~or the 
change of layer  spacing accompanying segregation. 
Let  A~, Aa(l+s/2~), Aa(l+s/~)  be the spacings be- 
tween layers with average scattering factors of f~ and 
f~, f~ and f~, f~ and f~. I t  is easily shown tha t  formula 
(15) for the in tens i ty  of the 3 M ± l  reflexions is then  
modified, assuming s ~ 1, to 

I(ha) -- l+2c~(1 -c~) f l ( f l+2) -2S  cos (2zha+s) 

+ ½ T - c o s  (4~ha+t)+P cos (2zha+t-p)  
I + P e + 2 P  cos (2~ha+p) 

where 

, (17) 

Scoss = ½+½a(1-a)/~(4+~) 
+ l/3c~ ( 1 -  c~) (1-2c~)fl (1 +fl)sha, 

S s i n s  = ± ½ 7 3 ( 1 - 2 ~ ) ( 1 - ~ + ~ ' )  
+c~(1-c~)(1 + fl)(2+ fl)sh~; 

Q cos q = 1 - 2 c ~ + 2 c ~ : V 3 c ¢ ( 1 - a ) ( 1 - 2 a ) s h s ,  

Q sin q = ±V3(1-2a)+c~(1-c~)eh~;  
R cos r = - l :~iV3(1-2a)sha,  
R sin r = - -~ sh a; 
P c o s p  = ½, 

P sin p = ± ½ ~ / 3 ( 1 - 2 ~ ) + 2 a ( 1 - a ) s h 3 ;  

T cos t = Q2 cos 2q-4c~(1-a)( l+f l )QR cos (q+r) 
+ 4 a 2 ( 1 - a ) S ( l + f l ) ~ R  a cos 2r, 

T sin t -- Qe sin 2q-4o~(1-a)( l+fl)QR sin (q+r) 
+4a~(1-a )~(1  +fl)~R ~ sin 2r. 

For a given alloy, with finite values of a, fl and  s, 
the  profiles of the 3 M + l  and 3 M - 1  reflexions are 
no longer equivalent ;  moreover, these profiles are 
different for the  successive peaks occurring with 
increasing h a . Eva lua t ion  of (17) with the aid of the 
Mercury computer  for the case s = 0.02 showed tha t  
the values of the points on the curves in Figs. 4(a) and  
4(b) (corresponding to s = 0) were changed by  about  
7 % for the first order peak and 22 % for the second 
order peak. For m a n y  alloys, in par t icular  those such as 
Ag-Au and Co-Ni with a wide range of solid solution, 
s is pract ical ly  zero and the simpler theory of S~ is 
then  adequate.  

Thanks  are due to Mr T. M. Valentine and  Mr 
T. Vann  for handl ing  the bulk of the calculations. 
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T h e  C r y s t a l  S t r u c t u r e s  of PuNi3  a n d  CeNi3* 
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(Received 9 December 1958) 

The structure of 1)u_Ni 3 and the structure and composition of CeNi 3 have been determined by single 
crystal X-ray methods. Pul~i 3 has three formula units in a rhombohedral unit  cell with a = 6.22 A 
and a = 33 ° 44', probable space group R3m. CeNi 3 has six formula units in a hexagonal cell with 
a=4 .98  and c=16.54 A, probable space group P63/mmc. These structures are both derived from 
stacking single layers of the MNi 5 structure (CaCus-type) and double layers of the MNi~ structure 
(Cu~Mg-type). 

Introduction 

Because of the m a n y  similarit ies between the pluto- 
n ium-n icke l  and cer ium-nickel  b inary  phase diagrams, 
s tructures of compounds in these two systems are 
s imul taneously  being investigated.  The p lu ton ium-  

* Work  performed under the auspices of the Atomic 
Energy  Commission. 

nickel phase diagram, publ ished originally by  Wensch 
& W h y t e  (1951), shows the existence of the  com- 
pounds PuNi,  PuNi2, PuNis, PuNi4, PuNi5 and Pu2Ni17. 
The structures of PuNi2, PuNi5 and Pu2Nil~ have  been 
reported in a review by  Coffinberry & Ell inger (1956) 
to be of the Cu2Mg, CaCu5 and Th2Ni17 structure types,  
respectively. Vogel (1947), in a s tudy  of the cer ium-  
nickel phase diagram, lists the compounds Ce3Ni, 

46* 


